Skip to content

Sample 65501

Soil and rake residue

Figure 1: Close-up photo of area where soil 65500 and rake sample 65510 were taken. AS16-107-17493

Figures 2 and 3: Maps of location of 65501 and 65510 at station 5 on Cayley Plain.

Figure 4: Composition of Apollo soil samples with that of 65501 shown.

The astronauts stopped at Station 5 on the way back to the LM, where they collected several rake and soil samples at the base of Stone Mountain (figure 2). 65501 and 65510 contained a high proportion of soil clods (altogether there are 150 grams of soil clods in the rake sample 65510). These can be seen in figure 1.

The maturity index for 65501 is low ( $I_s$ /FeO = 38). Butler et al. (1973) determined the grain size distribution (figure) and the modal mineralogy. The abundance of fragments of soil clods makes for an unusual distribution of grain size (figure 8) and a high value for the average grain size (149 microns).

Keil et al. (1972) and Warner et al. (1976) reported on rake samples from 65510. They were mostly soil clods (see figure 1).

Baedecker et al. (1972), Duncan et al. (1973), Nava (1974), Philpotts et al. (1973) and Korotev (1982) all reported analyses of 65501 and 65510 (table 1).

Figure 5: The composition of 65501 is slightly less aluminous.

Figure 6: Carbon content and maturiy index for 65501 (Morris 1978; Moore et al. 1973).

Kerridge et al. (1975a) determined 90 ppm carbon and 60 ppm nitrogen for 65500 (figure 6), while Epstein and Taylor (1973) reported carbon (110 ppm), hydrogen and isotopic ratios for 65513(?). Kothari and Goel (1973) reported 80 ppm nitrogen.

Jovanovic and Reed (1973) determined the halogens, Li, U and Te. Cirlin and Housley (1981) determined the content of Cd (120 ppb) and Zn (22 ppm).

Figure 7: Normalized rare-earth-element diagram for 65501.

Wieler et al. (1980) determined the density of fossil nuclear tracks.

Bogard and Nyquist (1973) and Walton et al. (1973) determined the rare gas content and isotopic ratios for 65501 and 65511.

Becker and Clayton (1977) calculated an exposure age of 510 m.y. from the abundance of 15N and compared this to the 310 m.y. 21Ne age of Walton et al. (1973).

average grain size = 149 microns

Figure 8: Grain size distribution for 65501 (Graf 1993, from data by Butler et al.).

Table 1. Chemical composition of 65501 and 65511.

weightreference Korotev82Baedecker72 Nava7465500Philpotts73
< 570 um
Duncan73 Korotev81ave. st. 565511
Korotev82
SiO2 %
TiO2
Al2O3
FeO
MnO
MgO
25.6
6.02
0.075
7
(a)
(a)
(a)
(a)
46.2
0.62
25.17
5.65
0.072
6.91
(e)
(e)
(e)
(e)
(e)
(e)
44.86
0.7
25.89
6.05
0.079
6.28
(d) 45.3
(d) 0.65
(d) 26.2
(d) 5.85
(d) 0.075
(d) 6.25
25.3
5.82
0.08
6.7
(a)
(a)
(a)
(a)
CaO
Na2O
K2O
P2O5
S %
sum
14.2
0.473
(a)
(a)
14.25
0.139
0.137
(e)
(e)
(e) 0.13814.9
0.44
(c ) 0.148
0.157
0.082
(d)
(d)
(d) 15
(d) 0.45
(d) 0.134
14.2
0.474
(a)
(a)
Sc ppm
V
Cr
Co
Ni
10.2
20
830
36.4
515
(a)
(a)
(a)
(a)
(a) 491(b)821(e)29010.1
25
780
31
430
10.6
24
847
26.3
370
(a)
(a)
(a)
(a)
(a)
Cu
Zn
Ga
Ge ppb
As
Se
26
5.6
1250
(b)
(b)
(b)
5.7
23
Rb
Sr
Y
155(a)3.56
162
(c ) 3.84
(c ) 162
48
(d) 3.3
(d) 162
(d) 48
165(a)
Zr
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb
215(a)228
15
(d)(d) 205240(a)
Cd ppb
In ppb
Sn ppb
Sb ppb
Te ppb
100
16
(b)
(b)
Cs ppm
Ba
0.16
175
(a)
(a)
165(c ) 175(d) 1300.17
172
(a)
(a)
La
Ce
Pr
14.7
39.5
(a)
(a)
37.6(c )14.415.9
42.7
(a)
(a)
Nd
Sm
Eu
7.03
1.211
(a)
(a)
24.2
6.9
1.26
(c )
(c )
(c )
6.7
1.24
7.56
1.233
(a)
(a)
Gd
Tb
1.49(a)8.63(c )1.441.59(a)
Dy
Ho
9.12(c )
Er
Tm
5.46(c )
Yb
Lu
Hf
Ta
W ppb
Re ppb
Os ppb
4.99
0.704
5.5
0.74
(a)
(a)
(a)
(a)
5.02
0.768
(c )
(c )
4.9
0.71
5.1
0.54
5.35
0.75
6.15
0.83
(a)
(a)
(a)
(a)
Ir ppb
Pt ppb
14.1(a) 14(b)10.5(a)
Au ppb
Th ppm
U ppm
2.77
0.7
(a)
(a)
8.1
technique: (a) INAA, (b) RNAA, (c ) IDMS, (d) XRF, (e) AA
(b)2.2
0.67
2.84
0.74
(a)
(a)

Lunar Sample Compendium C Meyer 2010

Baedecker P.A., Chou C-L., Sunberg L.L. and Wasson J.T. (1972) Extralunar materials in Apollo 16 soils and the decay rate of the extralunar flux 4.0 GY ago. Earth Planet. Sci. Lett. 17, 79-83.

Becker R.H. and Clayton R.N. (1977) Nitrogen isotopes in lunar soils as a measure of cosmic-ray exposure and regolith history. Proc. 8th Lunar Sci. Conf. 3685-3704.

Bogard D.D. and Nyquist L.E. (1973) 40Ar/36Ar variations in Apollo 15 and 16 regolith. Proc. 4th Lunar Sci. Conf. 1975-1986.

Butler P. (1972) Lunar Sample Information Catalog Apollo 16. Lunar Receiving Laboratory. MSC 03210 Curator’s Catalog. pp. 370.

Butler J.C., Greene G.M. and King E.A. (1973) Grain size frequency distribution and modal analysis of Apollo 16 fines. Proc. 4th Lunar Sci. Conf. 267-278.

Cirlin E.H. and Housley R.M. (1981) Distribution and evolution of Zn, Cd, and Pb in Apollo 16 regolith samples and the average U-Pb ages of the parent rocks. Proc. 12th Lunar Planet. Sci. Conf. 529-540.

Duncan A.R., Erlank A.J., Willis J.P. and Ahrens L.H. (1973) Composition and inter-relationships of some Apollo 16 samples. Proc. 4th Lunar Sci. Conf. 1097-1113.

Epstein S. and Taylor H.P. (1973b) The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Proc. 4th Lunar Sci. Conf. 1559-1575.

Jovanovic S. and Reed G.W. (1973b) Volatile trace elements and the characterization of the Cayley formation and the primitive lunar crust. Proc. 4th Lunar Sci. Conf. 1313-1324.

Graf J.C. (1993) Lunar Soils Grain Size Catalog. NASA Pub. 1265

Keil K., Dowty E., Prinz M. and Bunch T.E. (1972) Description, classification and inventory of 151 Apollo 16 rake samples from the LM area and station 5. Curator’s Catalog, JSC.

Kerridge J.F., Kaplan I.R., Petrowski C. and Chang S. (1975) Light element geochemistry of Apollo 16 rocks and soils. Geochim. Cosmochim. Acta 39, 137-162.

Korotev R.L. (1982) Comparative geochemistry of Apollo 16 surface soils and samples from cores 64002 and 60002 thru 60007. Proc. 13th Lunar Planet. Sci. Conf. A269-A278. Kothari B.K. and Goel P.S. (1973) Nitrogen in lunar samples*. Proc. 4th Lunar Sci. Conf.* 1587-1596.

LSPET (1973) The Apollo 16 lunar samples: Petrographic and chemical description. Science 179, 23-34.

LSPET (1972) Preliminary examination of lunar samples. Apollo 16 Preliminary Science Report. NASA SP-315, 7- 1—7-58.

Marvin U.B. (1972) Apollo 16 coarse fines (4-10 mm): Sample classification, description and inventory. JSC Catalog.

Moore C.B., Lewis C.F. and Gibson E.K. (1973) Total carbon contents of Apollo 15 and 16 lunar samples. Proc. 4th Lunar Sci. Conf. 1613-1923.

Moore C.B. and Lewis C.F. (1975) Total nitrogen contents of Apollo 15, 16 and 17 lunar fines samples. Lunar Sci. VI, 569-571.

Morris R.V., Score R., Dardano C. and Heiken G. (1983) Handbook of Lunar Soils. Two Parts. JSC 19069. Curator’s Office, Houston

Morris R.V. (1978) The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation. Proc. 9th Lunar Sci. Conf. 2287-2297.

Nava D.F. (1974a) Chemical compositions of some soils and rock types from the Apollo 15, 16, and 17 lunar sites. Proc. 5th Lunar Sci. Conf. 1087-1096.

Philpotts J.A., Schumann S., Kouns C.W., Lum-Staab R.K.L. and Schnetzler C.C. (1973b) Apollo 16 returned lunar samples – lithophile trace-element abundances. Proc. 4th Lunar Sci. Conf. 1427-1436.

Sutton R.L. (1981) Documentation of Apollo 16 samples. In Geology of the Apollo 16 area, central lunar highlands. (Ulrich et al. ) U.S.G.S. Prof. Paper 1048.

Taylor H.P. and Epstein S. (1975) O18/O16 and Si30/Si28 studies of some Apollo 15, 16 and 17 samples. Proc. 4th Lunar Sci. Conf. 1657-1679.

Warner R.D., Dowty E., Prinz M., Conrad G.H., Nehru C.E. and Keil K. (1976c) Catalog of Apollo 16 rake samples from the LM area and station 5. Spec. Publ. #13, UNM Institute of Meteoritics, Albuquerque. 87 pp.

Wieler R., Etique Ph., Signer P. and Poupeau G. (1980) Record of the solar corpuscular radiation in minerals from lunar soils: A comparative study of noble gases and tracks. Proc. 11th Lunar Planet. Sci. Conf. 1369-1393.